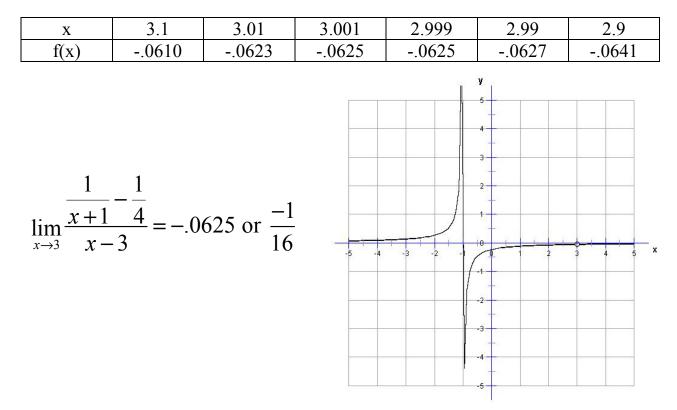
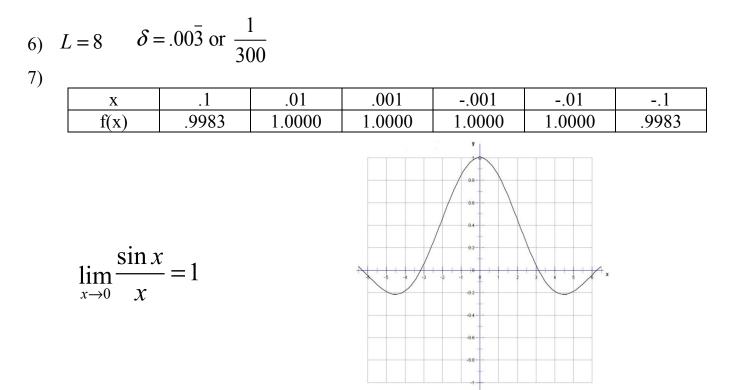


4) L=5 Proof: Find a relationship between ε and δ by stating that $0 < |x-a| < \delta$ where a = 2 which gives you $|x-2| < \delta$ by substitution. Now state that $|f(x)-L| < \varepsilon$. Substitution yields $|(x+3)-(5)| < \varepsilon$. Simplify to get $|x-2| < \varepsilon$ which means that the relationship between δ and ε is $\delta = \varepsilon$. Therefore, if $0 < |x-2| < \delta$, then $|(x-2)| < \varepsilon$ which means $|(x+3)-(5)| < \varepsilon$

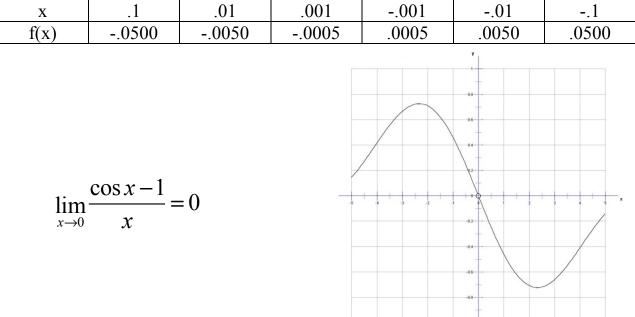
5)

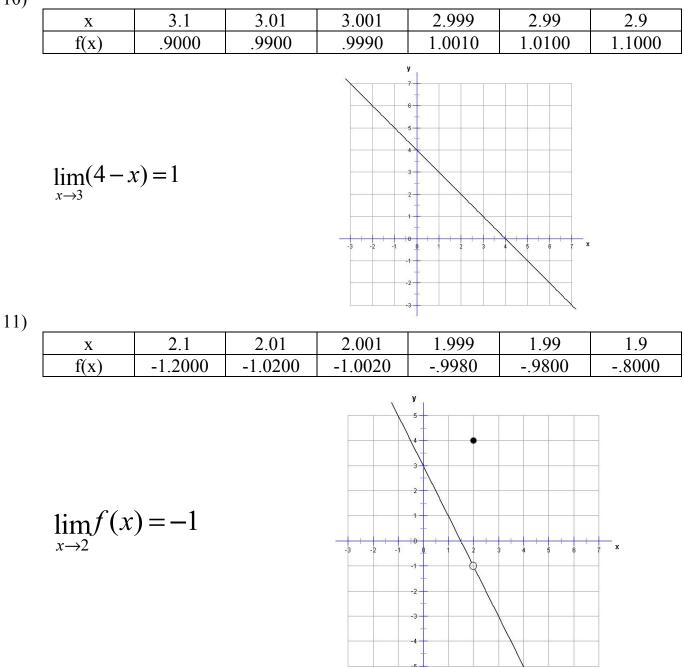


3)



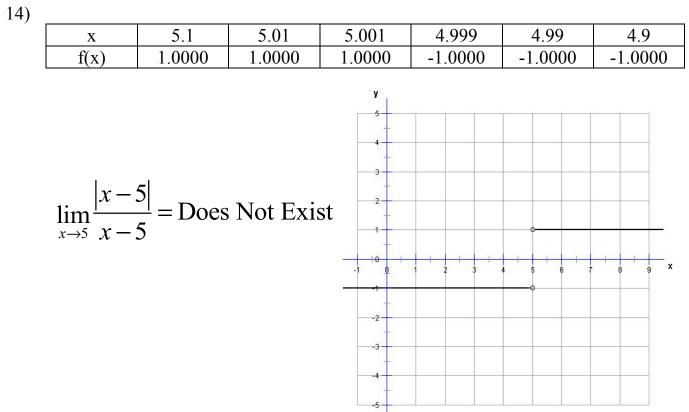
8) L = -8 Proof: Find a relationship between ε and δ by stating that $0 < |x-a| < \delta$ where a = 4 which gives you $|x-4| < \delta$ by substitution. Now state that $|f(x)-L| < \varepsilon$. Substitution yields $|(-3x+4)-(-8)| < \varepsilon$. Simplify to get $|-3x+12| < \varepsilon$ you must now manipulate this inequality to get $|-3(x-4)| < \varepsilon$ which is equivalent to $3|(x-4)| < \varepsilon$ and finally $|x-4| < \frac{\varepsilon}{3}$. This means that the relationship between δ and ε is $\delta = \frac{\varepsilon}{3}$. Therefore, if $0 < |x-4| < \delta$, then $0 < |x-4| < \frac{\varepsilon}{3}$ then $3|x-4| < \varepsilon$ then $|-3(x-4)| < \varepsilon$ which can then be written as $|-3x+12| < \varepsilon$ or $|(-3x+4)+8| < \varepsilon$ and finally as $|(-3x+4)-(-8)| < \varepsilon$





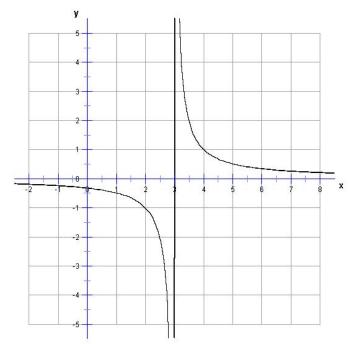
12) L=0 Proof: Find a relationship between ε and δ by stating that $0 < |x-a| < \delta$ where a = 0 which gives you $|x-0| < \delta$ by substitution. Now state that $|f(x)-L| < \varepsilon$. Substitution yields $|\sqrt[3]{x}-0| < \varepsilon$. Simplify to get $|\sqrt[3]{x}| < \varepsilon$ you must now manipulate this inequality to get $|x| < \varepsilon^3$ which is equivalent to $|x-0| < \varepsilon^3$. This means that the relationship between δ and ε is $\delta = \varepsilon^3$. Therefore, if $0 < |x-0| < \delta$, then $0 < |x-0| < \varepsilon^3$ which can become $\sqrt[3]{|x-0|} < \varepsilon$ which simplifies to $|\sqrt[3]{x-0}| < \varepsilon$ which can then be written as $|\sqrt[3]{x}-0| < \varepsilon$.

13)
$$L=1$$
 $\delta = .002 \text{ or } \frac{1}{500}$



15)

Х	3.1	3.01	3.001	2.999	2.99	2.9
f(x)	10.0000	100.0000	1000.0000	-1000.0000	-100.0000	-10.0000

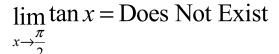


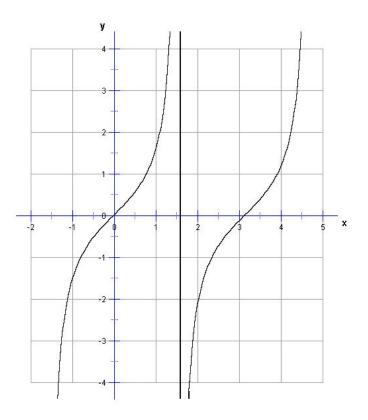
 $\lim_{x \to 3} \frac{1}{x - 3} = \text{Does Not Exist}$

16) L=2 Proof: Find a relationship between ε and δ by stating that $0 < |x-a| < \delta$ where a = 1 which gives you $|x-1| < \delta$ by substitution. Now state that $|f(x)-L| < \varepsilon$. Substitution yields $|(x^2+1)-(2)| < \varepsilon$. Simplify to get $|x^2-1| < \varepsilon$ you must now manipulate this inequality to get $|(x+1)(x-1)| < \varepsilon$. In a case like this, the only way to produce x-1 inside the absolute value is to set a boundary on the proof by making x equal something close to a. If x = 2, then the proof is valid for all values of x as long as $a < x \le 2$. By substitution, $|(x+1)(x-1)| < \varepsilon$ becomes $|3(x-1)| < \varepsilon$ which is equivalent to $3|(x-1)| < \varepsilon$ and finally $|(x-1)| < \frac{\varepsilon}{3}$. This means that the relationship between δ and ε is $\delta = \frac{\varepsilon}{3}$. Therefore, if $0 < |x-1| < \delta$, then $0 < |x-1| < \frac{\varepsilon}{3}$ then $3|x-1| < \varepsilon$ then $|3(x-1)| < \varepsilon$ which can then be written as $|(x+1)(x-1)| < \varepsilon$ if $a < x \le 2$ where the maximum value of x is 2. This can be written as $|x^2-1| < \varepsilon$ or $|x^2+1-2| < \varepsilon$ and finally as $|(x^2+1)-(2)| < \varepsilon$

1	7)
1	1)

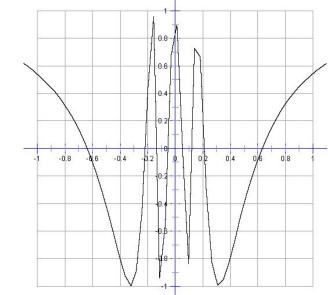
X	1.6708	1.5808	1.5718	1.5698	1.5608	1.4708
f(x)	-9.9663	-99.9600	-996.3400	1003.6864	100.0334	9.9670





18)

X	.1	.01	.001	001	01	1
f(x)	8391	.8623	.5624	.5624	.8623	8391



x

y

$$\lim_{x \to 0} \cos(\frac{1}{x}) = \text{Does Not Exist}$$

19)
$$L = 2$$
 $\delta = .02 \text{ or } \frac{1}{50}$

20) L = -1 Proof: Find a relationship between ε and δ by stating that $0 < |x-a| < \delta$ where a = -3 which gives you $|x-(-3)| < \delta$ by substitution and simplify to $|x+3| < \delta$. Now state that $|f(x)-L| < \varepsilon$. Substitution yields $|(2x+5)-(-1)| < \varepsilon$. Simplify to get $|2x+6| < \varepsilon$ you must now manipulate this inequality to get $|2(x+3)| < \varepsilon$ which is equivalent to $2|(x+3)| < \varepsilon$ and finally produces $|(x+3)| < \frac{\varepsilon}{2}$. This means that the relationship between δ and ε is $\delta = \frac{\varepsilon}{2}$. Therefore, if $0 < |x+3| < \delta$, then $0 < |x+3| < \frac{\varepsilon}{2}$ then $2|x+3| < \varepsilon$ then $|2(x+3)| < \varepsilon$ which can be simplified to $|2x+6| < \varepsilon$ which can become $|2x+5+1| < \varepsilon$ and finally as $|(2x+5)-(-1)| < \varepsilon$