

2) L=0 Proof: Find a relationship between ε and δ by stating that $0 < |x-a| < \delta$ where a = 3 which gives you $|x-3| < \delta$ by substitution. Now state that $|f(x)-L| < \varepsilon$. Substitution yields $|(6x-18)-(0)| < \varepsilon$. Simplify to get $|6x-18| < \varepsilon$ you must now manipulate this inequality to get $|6(x-3)| < \varepsilon$ which is equivalent to

 $6|(x-3)| < \varepsilon$ and finally $|x-3| < \frac{\varepsilon}{6}$. This means that the relationship between δ and ε is $\delta = \frac{\varepsilon}{6}$. Therefore, if $0 < |x-3| < \delta$, then $0 < |x-3| < \frac{\varepsilon}{6}$ then $6|x-3| < \varepsilon$ then $|6(x-3)| < \varepsilon$ which can then be written as $|6x-18| < \varepsilon$ or $|6x-18-0| < \varepsilon$ and finally as $|(6x-18)-(0)| < \varepsilon$ 3)

Х	0.1	0.01	0.001	-0.001	-0.01	-0.1
f(x)	1.0050	1.0001	1.0000	1.0000	1.0001	1.0050

 $\lim_{x\to 0} \sec x = 1$

4)
$$L = 29$$
 $\delta = .0009$ or $\frac{1}{1100}$
5) $\frac{x 1.1}{f(x) 3.2100 3.0201 3.0020 2.9980 2.9801 2.8100}$
 $\lim_{x \to 1} f(x) = 3$
6) 16
7) -1
8) -4
9) 2
10) 1
11) $\frac{1}{2}$
12) -2
13) A. 15 B. 5 C. 6 D. $\frac{2}{3}$
14) -2
15) 1
16) -1
17) $\frac{1}{2}$
18) 1
19) -1
19) -1
19) -1

20) A. 64 B. 2 C. 12 D. 8