Four Important Rules for Finding Derivatives & Two Trig Rules $\frac{d}{dx}(x)^n = nx^{n-1}$ *dx* $= nx^{n-1}$: **This is the Power Rule** - *Demonstrate this by showing that the limit definition of the derivative always gives the answer from the power rule! Start with the definition of a derivative, $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ $G(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$. If $f(x) = (x)^n$ and $f(x + \Delta x) = (x + \Delta x)^n$ then $f(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$ *x* $f'(x) = \lim_{x \to 0} \frac{(x + \Delta x)^n - (x)}{x}$ $\chi'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$. Now, think about the expansion of a binomial to the nth degree: $(x + \Delta x)^1 \rightarrow x^1 + \Delta x$, $(x + \Delta x)^2 \rightarrow x^2 + 2x\Delta x + \Delta x^2$, $(x + \Delta x)^3 \rightarrow x^3 + 3x^2\Delta x + 3x\Delta x^2 + \Delta x^3$, and $(x + \Delta x)^4 \rightarrow x^4 + 4x^3\Delta x + 6x^2\Delta x^2 + 4x\Delta x^3 + \Delta x^4$, etc. What do you notice? If you separate the very first term from each of these expansions, separating the $(x)^n$ term, all of the remaining terms contain at least one Δx . Now notice that the top of the definition of a derivative ends in $- (x)^n$. This means that the (x) ⁿ that you separated, combined with the $-(x)$ ⁿ that's always at the end, cancel each other out. That results in at least one Δx in EVERY term on the top. Factoring out that one Δx , allows you to cancel the Δx on the bottom. Now look at what's left on the top. Your final answer for the derivative depends on what n was. If n was 2, the only term remaining without a Δx is $2x$. If n was 3, the only term remaining without a Δx is $3x^2$. If n was 4, the only term remaining without a Δx is $4x^3$. Notice a pattern? If $f(x) = (x)^2$, then $f'(x) = 2x^1$. If $f(x) = (x)^3$, then $f'(x) = 3x^2$. If $f(x) = (x)^4$, then $f'(x) = 3x⁴$. In each function, the power on x became the number that x is multiplied by, and the exponent got reduced by 1. Therefore, $f'((x)^n) = nx^{n-1}$.

$$
\frac{d}{dx}(f(x) \cdot g(x)) = g(x) \cdot f'(x) + f(x) \cdot g'(x)
$$
 - This is the Product Rule - *Prove this

with the limit definition of a derivative* Proof: Start by stating that $\frac{d}{dx} (f(x) \cdot g(x))$ can be written as $(f \cdot g)'(x)$. Apply the definition of a derivative, $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ $\prime(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$ and substitute $f \cdot g$ in for *f* which yields $(f \cdot g)'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x)}{\Delta x}$ $-g'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x)}{\Delta x}.$

You can then subtract and add $f(x + \Delta x)g(x)$ in between the two terms in the numerator because you are essentially adding 0. This gives you

$$
(f \cdot g)'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x + \Delta x) \cdot g(x) + f(x + \Delta x) \cdot g(x) - f(x) \cdot g(x)}{\Delta x}
$$
. Factoring

the top gives you $(f \cdot g)'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)(g(x + \Delta x) - g(x)) + g(x)(f(x + \Delta x) - f(x))}{\Delta x}$ $-g'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)(g(x + \Delta x) - g(x)) + g(x)(f(x + \Delta x) - f(x))}{\Delta x}$. Split

this sum into 2 limits

$$
(f \cdot g)'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)(g(x + \Delta x) - g(x))}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x)(f(x + \Delta x) - f(x))}{\Delta x}.
$$
 Now split the

products to get $(f \cdot g)'(x) = \lim_{\Delta x \to 0} f(x + \Delta x) \cdot \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} + \lim_{\Delta x \to 0} g(x) \cdot \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ $-g'(x) = \lim_{\Delta x \to 0} f(x + \Delta x) \cdot \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} + \lim_{\Delta x \to 0} g(x) \cdot \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ Using the definition of a derivative and taking the limits gives you

 $(f \cdot g)'(x) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$ which can also be written as $(f \cdot g)'(x) = g(x) \cdot f'(x) + f(x) \cdot g'(x)$

$$
\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}
$$
 - This is the Quotient Rule - *Prove this rule

by forcing $g(x)$ up and using the product rule! So,

$$
\left(\frac{f(x)}{g(x)}\right)' = (f \cdot g^{-1})'(x) = g^{-1}(x) \cdot f'(x) - f(x) \cdot g^{-2}(x) \cdot g'(x)
$$
 which simplifies to

$$
\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)}{g(x)} - \frac{f(x) \cdot g'(x)}{g^2(x)} = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{g^2(x)}
$$
 * The students need to wait

for Worksheet #7 to completely understand where all the $g'(x)$'s came from so don't get hung up on that*

$$
\frac{d}{dx}\left(\frac{1}{g(x)}\right) = \frac{-g'(x)}{(g(x))^2}
$$
 - This is the Reciprocal Rule - *The reciprocal rule is derived

from the quotient rule – it's not necessary to know or memorize, but makes things go quicker!

First two trig rules for derivatives:

Give the students the $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\sin x) = \cos x$ derivative trig rule and the $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\cos x) = -\sin x$ rule. Demonstrate how each rule makes sense by graphing $sin(x)$ and $cos(x)$ and showing that the slope of $sin(x)$ always equals $cos(x)$. By the same method, show that the slope of $cos(x)$ always equals $-sin(x)$. especially at 90 degrees!

Classroom Examples

1) Determine the points, if any, at which the function $y = x^5 - 160x^2$ has a horizontal tangent line.

Answer: $y' = 5x^4 - 320x = 0$ $5x(x^3 - 64) = 0$ $5x(x-4)(x^2 + 4x + 16) = 0$ (0,0) & (4,-1536)

2) Find the equation of the line tangent to $y = x^3 + 4x^2 + 3x - 5$ at the point (-2,-3)

Answer: $y' = 3x^2 + 8x + 3$ $y'(-2) = 3(-2)^2 + 8(-2) + 3 = -1$ $y = -1x + b$ $(-3) = -1(-2) + b$ *b* = −5 Therefore the tangent line is *y* = −1*x* − 5

3) Find
$$
f'(x)
$$
 if $f(x) = (x^3 - 4x^2 + 5)(-x^3 + 3x - 2)$ and then calculate $f'(-3)$

Answer: Call $h(x) = x^3 - 4x^2 + 5$ and $g(x) = -x^3 + 3x - 2$ Use the product rule to find

$$
(h(x) \cdot g(x))' = g(x) \cdot h'(x) + h(x) \cdot g'(x) = (-x^3 + 3x - 2)(3x^2 - 8x) + (x^3 - 4x^2 + 5)(-3x^2 + 3)
$$

$$
(h(x) \cdot g(x))' = (-x^3 + 3x - 2)(3x^2 - 8x) + (x^3 - 4x^2 + 5)(-3x^2 + 3)
$$

\n
$$
(h(x) \cdot g(x))' = -6x^5 + 20x^4 + 12x^3 - 57x^2 + 16x + 15 = f'(x) \qquad f'(-3) = 2208
$$

\n4) Find $f'(x)$ if $f(x) = \frac{-4x - 7}{3x - 1}$ and find $g'(x)$ if $g(x) = \frac{1}{3x^2 - 5x}$

Answer #1: Call $h(x) = -4x - 7$ and $g(x) = 3x - 1$ Use the quotient rule to find $(g(x))$ $g(x) \cdot h'(x) - h(x) \cdot g'(x)$ $(g(x))^{2}$ $(3x-1)^{2}$ $9x^{2}$ $(x) - h(x) \cdot g'(x)$ $(3x-1)(-4) - (-4x-7)(3)$ 25 (x) $(g(x))^2$ $(3x-1)^2$ $9x^2-6x+1$ $h(x)$ $g(x) \cdot h'(x) - h(x) \cdot g'(x)$ $(3x-1)(-4) - (-4x)$ $g(x)$ $(g(x))^{2}$ $(3x-1)^{2}$ $9x^{2}-6x$ $\left(\frac{h(x)}{g(x)}\right)' = \frac{g(x) \cdot h'(x) - h(x) \cdot g'(x)}{(g(x))^2} = \frac{(3x-1)(-4) - (-4x-7)(3)}{(3x-1)^2} =$ $(g(x))^{2}$ $(3x-1)^{2}$ $9x^{2}-6x+$

Answer #2: Call $h(x) = 3x^2 - 5x$ Use the reciprocal rule to find

$$
\left(\frac{1}{h(x)}\right)' = \frac{-h'(x)}{(h(x))^2} = \frac{6x-5}{(3x^2-5x)^2} = \frac{6x-5}{9x^4-30x^3+25x^2}
$$

5) Find
$$
f'(x)
$$
 if $f(x) = (-5x+3)^2$

Answer: $f(x) = 25x^2 - 30x + 9$ so $f'(x) = 50x - 30$

6) Find
$$
g'(x)
$$
 if $g(x) = \frac{4x}{-3 + 5\sin x}$

Answer: Call $h(x) = 4x$ and $f(x) = -3 + 5\sin x$ Use the quotient rule to find $f(x)$ $\int f(x) \cdot h'(x) - h(x) \cdot f'(x)$ $(f(x))^{2}$ $(-3+5\sin x)^{2}$ 25sin² $(x) - h(x) \cdot f'(x) = (-3x + 5\sin x)(4) - (4x)(5\cos x) = -12x + 20\sin x - 20x\cos x$ (x) $(f(x))^2$ $(-3+5\sin x)^2$ $25\sin^2 x - 30\sin x + 9$ $h(x)$ $f(x) \cdot h'(x) - h(x) \cdot f'(x) = (-3x + 5\sin x)(4) - (4x)(5\cos x) = -12x + 20\sin x - 20x\cos x$ $f(x)$ $(f(x))^{2}$ $(-3+5\sin x)^{2}$ $25\sin^{2} x - 30\sin x$ $\left(\frac{h(x)}{f(x)}\right)' = \frac{f(x) \cdot h'(x) - h(x) \cdot f'(x)}{(f(x))^2} = \frac{(-3x + 5\sin x)(4) - (4x)(5\cos x)}{(3 + 5\sin x)^2} = \frac{-12x + 20\sin x - 12x}{25\sin^2 x} = -\frac{20\sin^2 x}{25\sin^2 x}$ $(f(x))^{2}$ $(-3+5\sin x)^{2}$ $25\sin^{2} x - 30\sin x +$

7) Find the derivative of
$$
f(x) = \frac{\sqrt[4]{x^3}}{x^2}
$$

\nAnswer: $f(x) = \frac{x^{\frac{3}{4}}}{x^2} = \frac{1}{\frac{5}{x^4}}$ Call $h(x) = x^{\frac{5}{4}}$ Use the reciprocal rule to find
\n
$$
\left(\frac{1}{h(x)}\right)' = \frac{-h'(x)}{(h(x))^2} = \frac{-\frac{5}{4}x^{\frac{1}{4}}}{(x^{\frac{5}{4}})^2} = \frac{-\frac{5x^{\frac{1}{4}}}{4}}{x^{\frac{5}{2}}} = -\frac{5x^{\frac{1}{4}}}{4x^{\frac{5}{2}}} = -\frac{-5}{4x^{\frac{5}{4}}} = \frac{-5}{4x^{\frac{9}{4}}} = \frac{-5\sqrt[4]{x^3}}{4x^{\frac{3}{4}}}
$$

Find the derivative of $h'(x)$ if $h(x) = \frac{2 - \sin x}{3 + 2\cos x}$ 8)

Answer: Call $g(x) = 2 - \sin x$ and $f(x) = 3 + 2\cos x$ Use the quotient rule to find

$$
\left(\frac{g(x)}{f(x)}\right)' = \frac{f(x) \cdot g'(x) - g(x) \cdot f'(x)}{4 \cos^2 x + 12 \cos x + 9} = \frac{(3 + 2\cos x)(-\cos x) - (2 - \sin x)(-2\sin x)}{4 \cos^2 x + 12 \cos x + 9} = \frac{4 \sin x - 3 \cos x - 2}{4 \cos^2 x + 12 \cos x + 9} = \frac{4 \sin x - 3 \cos x - 2}{4 \cos^2 x + 12 \cos x + 9}
$$